Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cureus ; 15(2): e34827, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2285293

ABSTRACT

Background The nucleocapsid protein (N protein) of SARS-CoV-2 is undeniably a potent target for the development of diagnostic tools due to its abundant expression and lower immune evasion pressure compared to spike (S) protein. Methods Blood samples of active COVID-19 infections (n=71) and post-COVID-19 (n=11) were collected from a tertiary care hospital in India; pre-COVID-19 (n=12) sera samples served as controls. Real-time reverse transcriptase-PCR (rRT-PCR) confirmed pooled sera samples (n=5) were used with PEPperCHIP® SARS-CoV-2 Proteome Microarray (PEPperPRINT GmbH, Germany) to screen immunodominant epitopes of SARS-CoV-2. Highly immunodominant epitopes were then commercially synthesized and further validated for their immunoreactivity by dot-blot and ELISA. Results The lowest detectable concentration (LDC) of the N1 peptide in the dot-blot assay was 12.5 µg demonstrating it to be fairly immunoreactive compared to control sera. IgG titers against the contiguous peptide (N2: 156AIVLQLPQGTTLPKGFYAEGS176) was found to be significantly higher (p=0.018) in post-COVID-19 compared to pre-COVID-19 control sera. These results suggested that N2-specific IgG titers buildup over time as expected in post-COVID-19 sera samples, while a non-significant immunoreactivity of the N2 peptide was also observed in active-COVID-19 sera samples. However, there were no significant differences in the total IgG titers between active COVID-19 infections, post-COVID-19 and pre-COVID-19 controls. Conclusion The N2-specific IgG titers in post-COVID-19 samples demonstrated the potential of N protein as an exposure biomarker, particularly in sero-surveillance studies.

2.
Curr Microbiol ; 80(1): 1, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2282221

ABSTRACT

India was severely affected by several waves of SARS-CoV-2 infection that occurred during April-June 2021 (second wave) and December 2021-January 2022 (third wave) and thereafter, resulting in >10 million new infections and a significant number of deaths. Global Initiative on Sharing Avian Influenza Data database was used to collect the sequence information of ~10,000 SARS-CoV-2 patients from India and our sequence analysis identified three variants B.1.1.7 (alpha, α), B1.617.2 (delta, Δ), B.1.1.529 (Omicron, Oo) and one Omicron sub-variant BA.2.75 as the primary drivers for SARS-CoV-2 waves in India. Structural visualization and analysis of important mutations of alpha, delta, Omicron and its sub-variants of SARS-CoV-2 Receptor-Binding Domain (RBD) was performed and our analysis clearly shows that mutations occur throughout the RBD, including the RBD surface responsible for human angiotensin-converting enzyme 2 (hACE-2) receptor-binding. A comparison between alpha, delta and omicron variants/sub-variants reveals many omicron mutations in the hACE-2 binding site and several other mutations within 5 Å of this binding region. Further, computational analysis highlights the importance of electrostatic interactions in stabilizing RBD-hACE-2-binding, especially in the omicron variant. Our analysis explores the likely role of key alpha, delta and omicron mutations on binding with hACE-2. Taken together, our study provides novel structural insights into the implications of RBD mutations in alpha, delta and omicron and its sub-variants that were responsible for India's SARS-CoV-2 surge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL